Adaptive Traffic Signal Control based on Reinforcement Learning

Mengyu Guo, Pin Wang, Ching-Yao Chan Acknowledging generous support of HUAWEI

> BDD Spring Retreat March 27, 2019

Project Overview

- Objective:
 - To develop a Traffic Signal Control System for demonstrating the benefits of advanced machine learning techniques in optimizing traffic flow in road networks.
- Focus of Current Phase:
 - Implementation of simulation platform for case studies
 - Development of RL algorithms for traffic signal control for single and multiple intersections

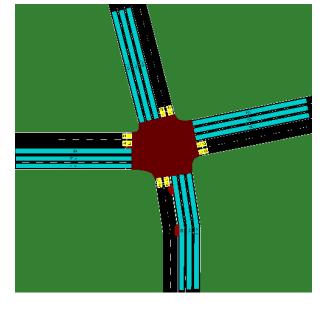
Building Road Network

Road Network: Construct a Real-world Intersection in SUMO

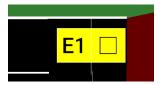
Test site description

- Total 12 approaching lanes
- 3 approaching lanes of each directions
- 1 left-turn lane, 2 through lanes
- Right-most through lane can be used for turning right

SUMO platform



Inductive loop detector

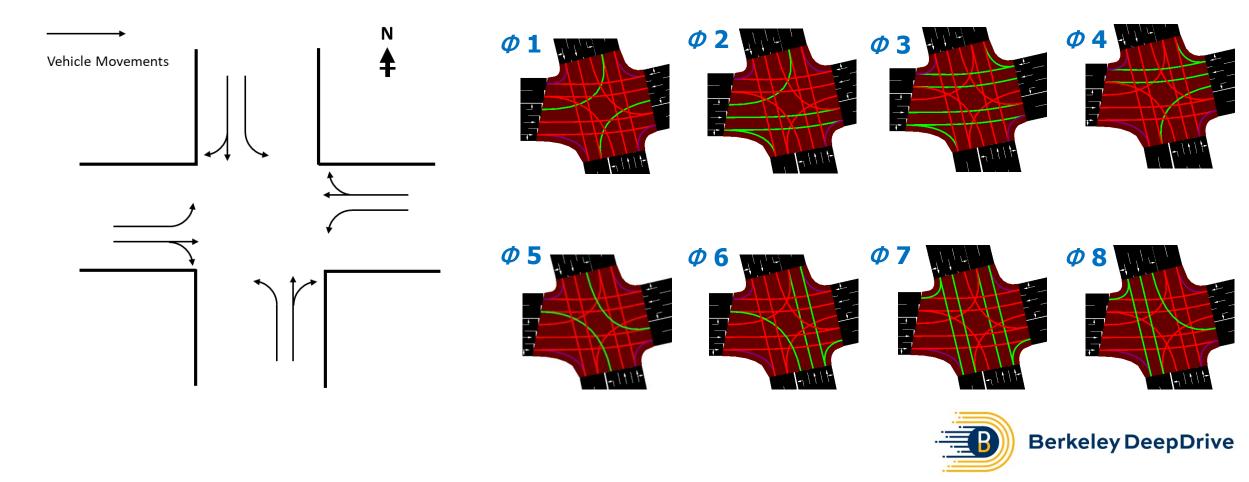


Lane area detector

Berkeley DeepDrive

Traffic Signal Plan

- Signal Phases
 - Movements in one phase can operate concurrently



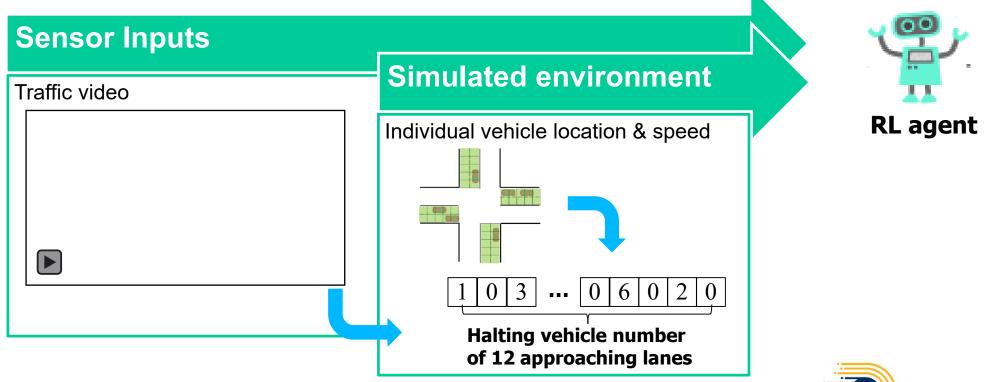
Traffic Signal Control Scheme

• Fixed vs. Flexible Phase Sequence

- Fixed sequence
 - Vastly exist in practice
 - More interpretable
 - Pre-programmed
- Flexible sequence (fully-actuated)
 - More efficient in dealing with real-time traffic
 - More robust in accidental scenarios
 - More like policeman directing traffic at intersection

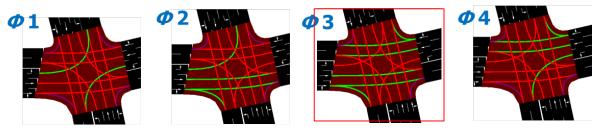
Reinforcement Learning Algorithm - State

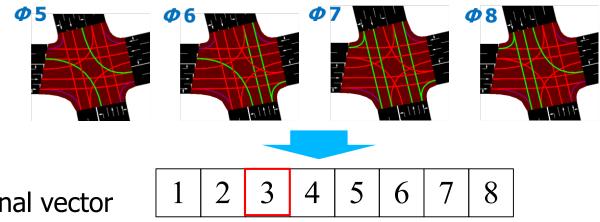
- State
 - In current phase simulated traffic is assumed to be data source
 - In future phase we will go deeper with proper real-world dataset



Reinforcement Learning Algorithm - Action

- Action
 - Two strategies: fixed phase pair sequence VS. flexible phase pair sequence
 - Flexible sequence strategy:





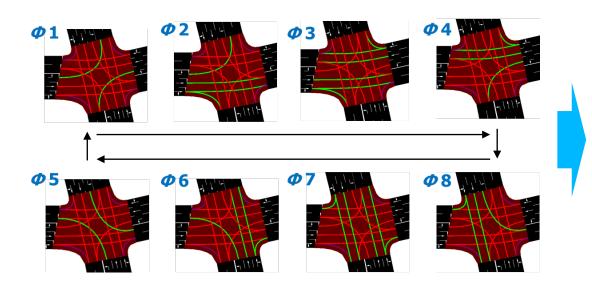
Action:

- 8-dimensional vector
- Give phase X green light for Δ

Reinforcement Learning Algorithm - Action

- Action
 - Two strategies: fixed phase pair sequence VS. flexible phase pair sequence
 - Fixed sequence strategy:

The phase sequence:



Parameters:

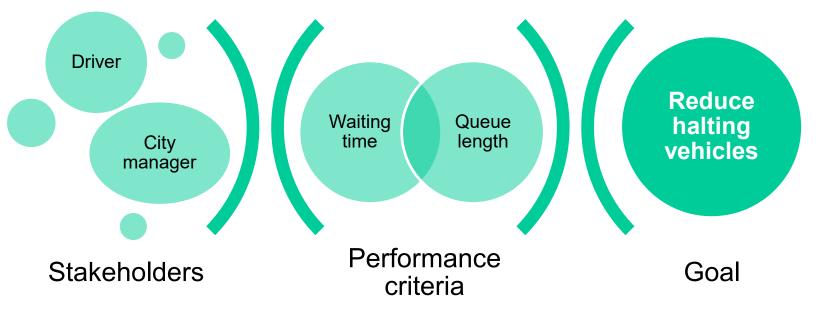
- *T_{min}* minimum green time
- \varDelta additive time span

Action:

- {0, 1}
- 0 switch to next phase pair then run *Tmin*
- 1 extend current green phase pair by ∠ then switch to next phase pair

Reinforcement Learning Algorithm - Reward

- Reward
 - Reward = percentage of halting vehicles reduced by an action (i.e. released during passed green phase pair)

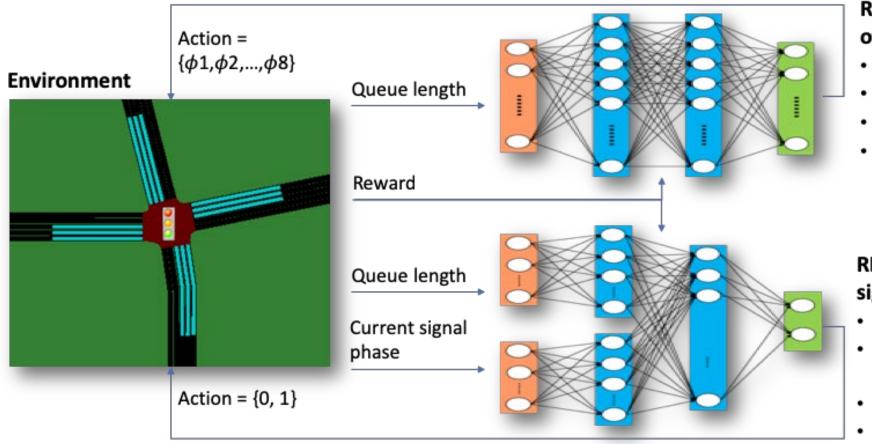


Halting vehicle: speed < 0.1 m/s

Berkeley DeepDrive

Reinforcement Learning Algorithm - Network

• Single Agent RL Architecture



RL Agent (flexible sequence of signal phases)

- Input layer (1×12)
- First hidden layer (1×64)
- Second hidden layer (1×64)
- Output layer (1×8)

RL Agent (fixed sequence of signal phases)

- Input layers (1×12 & 1×8)
- First hidden layers (1×64 & 1×64)
- Second hidden layer (1×128)
- Output layer (1×2)

Berkeley DeepDrive

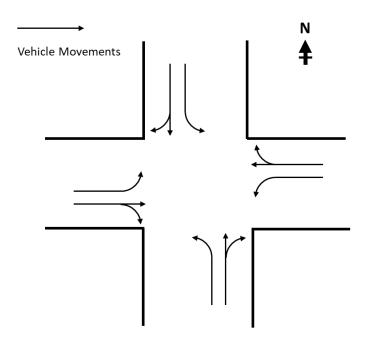
Case Study – Different Traffic Scenarios

Traffic Scenarios

- Scenario 1 major-minor roads
 - west-east higher than north-south
- Scenario 2 rush hour
 - north and east higher than the other two directions
- Scenario 3 heavy left turn
 - left-turn in west-east directions higher than through lanes of the same directions

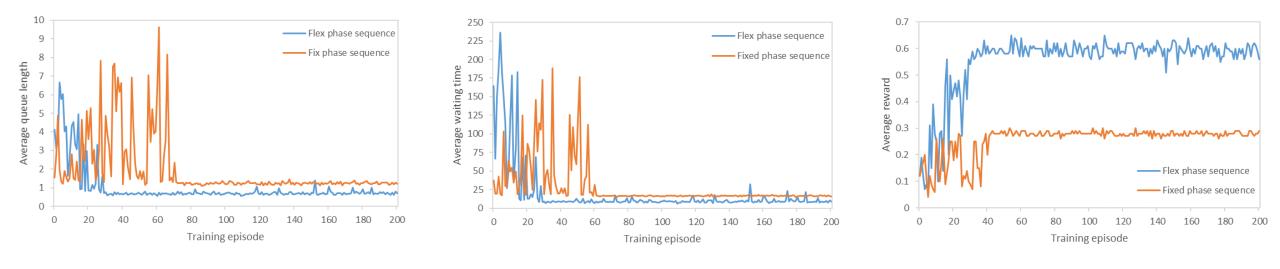
Scenario 4 – varying traffic flow

 significant variations alternating in west-east and northsouth directions



Reinforcement Learning Algorithm - Convergence

- Performance of RL Algorithm
 - Training: improvement and convergence (under scenario 1)



Queue Length (vehicle per approaching lane) Waiting Time (second per approaching vehicle)

Average Reward

Reinforcement Learning Algorithm - Benchmarking

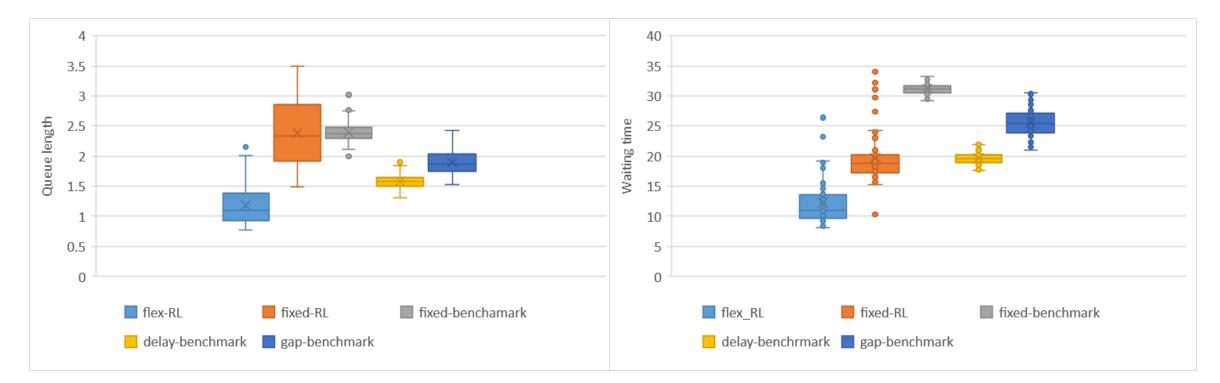
• Benchmarks:

- Fixed time control: phase duration is fixed during operation
- **Gap-based adaptive control:** prolong traffic phases whenever a continuous (i.e. maximum time gap between successive vehicle < 5) stream of traffic is detected
- Time loss based adaptive control: prolong traffic phases whenever there exists vehicle with accumulated time loss (i.e. 1 - v/v_{max}) exceeds 1s

https://sumo.dlr.de/wiki/Simulation/Traffic_Lights#Improving_Generated_programs_wit h_knowledge_about_traffic_demand

Reinforcement Learning Algorithm - Benchmarking

Comparison with Benchmarks (under Scenario 2)



Queue length

Waiting time

Reinforcement Learning Algorithm - Generalization

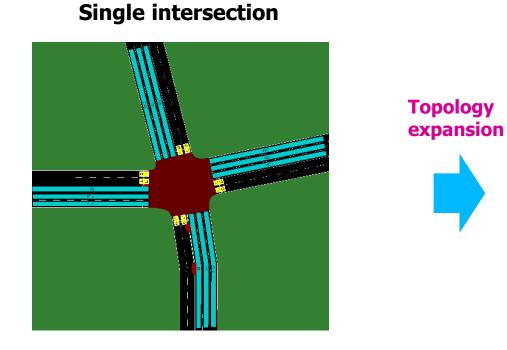
Generalization across scenarios

		Scenario 1 (Trained)	Scenario 2 (Test)	Scenario 3 (Test)	Scenario 4 (Test)
Flex-RL	Queue length	0.72 (0.11)	1.11 (0.26)	1.28 (0.32)	0.55 (0.28)
	Waiting time	9.84 (3.37)	12.62 (8.57)	12.73 (5.67)	10.95 (4.14)
Fixed-RL	Queue length	1.24 (0.06)	1.67 (0.32)	2.75 (0.60)	1.03 (0.42)
	Waiting time	16.66 (0.58)	17.09 (1.17)	22.29 (4.18)	10.81 (6.52)

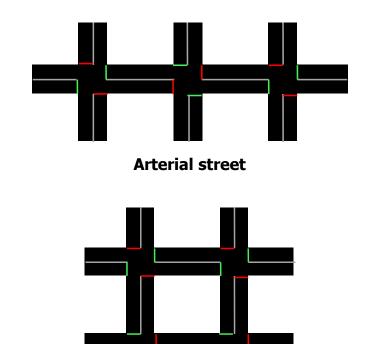
Statistics were obtained after 100 runs

Future Work

Multi-Agent RL for Multi-Intersection Traffic Signal Control



Multiple intersections



Downtown network

Thank You!

Questions?

